Instructions: Maximum time is 3 hours. If you are using a result shown in class then please state it precisely.

- 1. Let $\alpha > 0$. Consider the graph \mathbb{Z}_+ with weights $\mu_{n,n+1}^{\alpha} = \alpha^n$.
 - (a) (10 points) Show the graph $(\mathbb{Z}_+, \mu^{\alpha})$ has controlled weights. Does it have bounded weights ?
 - (b) (20 points)Show that the graph is recurrent if and only if $\alpha \leq 1$.
- 2. Let X_n be a random walk on \mathbb{Z}^3 with natural weights. Let T_0 be the hitting time of 0. Let $n \ge 1$, $A = \mathbb{Z}^3 \setminus \{0\}$. Let $h_n, h : \mathbb{Z}^3 \to [0, 1]$ be given by

$$h_n(x) = \mathbb{P}^x(T_0 \ge n) = \mathbb{P}^x(X_k \in A, 1 \le k \le n)$$

and

$$h(x) = \mathbb{P}^x(T_0 = \infty) = \mathbb{P}^x(X_n \in A, \text{ for all } n \ge 0).$$

- (a) (10 points) Show that $h_n = Q^n 1_A$ and h = Qh, where Q is the restriction of P onto A.
- (b) (5 points) Suppose $\alpha = \sup_{x \in A} h(x)$, show that $0 < \alpha \le 1$ and $h \le \alpha 1_A$
- (c) (5 points) Using (i) and (ii), conclude that $h \leq \alpha h_n$
- (d) (5 points) Conclude that $\max_{x \in \partial A} h(x) \neq \sup_{x \in \overline{A}} h(x)$.
- 3. Consider Γ to be the join of two copies of \mathbb{Z}^3 at their origins. Write $\mathbb{Z}^3_{(i)}$, i = 1, 2 the two copies, and 0_i for their origins. Let

 $F = \{X \text{ is ultimately in } Z^3_{(1)}\}$

and let $h(x) = \mathbb{P}^x(F)$.

- (a) (10 points) Show that h is harmonic,
- (b) (5 points) Show that $h(x) \ge \mathbb{P}^x(X \text{ never hits } 0_1)$ for $x \in \mathbb{Z}^3_{(1)}$.
- (c) (5 points) Show that $h(x) \leq \mathbb{P}^x(X \text{ hits } 0_2)$ for $x \in \mathbb{Z}^3_{(2)}$.
- (d) (5 points) State the Liouville Property and decide whether Γ satisfies it.
- 4. Let $(\Gamma = (V, E), \mu)$ be a locally finite, connected, infinite vertex, weighted graph. Let $\Omega = V^{\mathbb{Z}_+}$. For any $n \ge 0$, let $X_n : \Omega \to V$ be given by $X_n(\omega) = \omega_n$,

$$\mathcal{F}_n = \sigma\{X_k : 0 \le k \le n\}, \mathcal{G}_n = \sigma\{X_k : 0 \le k \ge n\}, \text{ and } \mathcal{F} = \mathcal{G}_0 = \sigma\{X_n : n \ge 0\}.$$

- (a) (5 points) Define the invariant σ -field, \mathcal{I} .
- (b) (5 points) Define the tail σ -field, \mathcal{T} .
- (c) (10 points) Show that $\mathcal{I} \subset \mathcal{T}$.
- (d) (5 points) Given an example where $\mathcal{I} \subsetneq \mathcal{T}$.

1